在供应链决策支持中启用可解释的人工智能功能
机构名称:
¥ 1.0

抽象可解释的人工智能(XAI)在实现明智决定的过程中发挥了作用。现代各种供应链(SC)平台的出现改变了SC相互作用的性质,导致了显着的不确定性。这项研究旨在对现有的有关决策支持系统(DSS)的文献进行彻底分析,并在SC领域内对XAI功能的结合。我们的分析揭示了XAI对SC领域决策过程的影响。本研究利用Shapley添加说明(SHAP)技术使用Python机器学习(ML)过程分析在线数据。解释性算法是专门为通过为其产生的预测提供理由来提高ML模型的清醒性的。本研究旨在建立可衡量的标准,以识别XAI和DSS的组成部分,从而在SC的背景下增强决策。这项研究评估了对他们做出预测的能力,在线数据集的利用,所检查的变量数量,学习能力的发展以及在决策背景下进行验证的研究,强调了需要在不确定条件下涉及智能决策的其他探索领域的研究领域。

在供应链决策支持中启用可解释的人工智能功能

在供应链决策支持中启用可解释的人工智能功能PDF文件第1页

在供应链决策支持中启用可解释的人工智能功能PDF文件第2页

在供应链决策支持中启用可解释的人工智能功能PDF文件第3页

在供应链决策支持中启用可解释的人工智能功能PDF文件第4页

在供应链决策支持中启用可解释的人工智能功能PDF文件第5页

相关文件推荐

可解释的人工智能
2023 年
¥2.0
可解释的人工智能
2024 年
¥4.0
可解释的人工智能
2023 年
¥2.0
可解释的人工智能
2020 年
¥10.0
可解释人工智能对
2022 年
¥1.0
可解释的人工智能
2020 年
¥1.0