Loading...
机构名称:
¥ 2.0

患有严重神经损伤的人通常依赖辅助技术,但目前的方法在准确解码多自由度 (DoF) 运动方面存在局限性。皮层内脑机接口 (iBMI) 使用神经信号来提供更自然的控制方法,但目前难以处理更高自由度的运动——大脑可以轻松处理这些运动。据推测,大脑通过肌肉协同作用简化了高自由度运动,肌肉协同作用将多块肌肉连接起来作为一个单元发挥作用。这些协同作用已经使用降维技术进行了研究,例如主成分分析 (PCA)、非负矩阵分解 (NMF) 和分离 PCA (dPCA),并成功用于降低噪音和提高非侵入式应用中的离线解码器稳定性。然而,它们在改善不同任务中植入记录的解码和通用性方面的有效性尚不清楚。在这里,我们评估了大脑和肌肉协同作用是否可以提高非人类灵长类动物执行双自由度手指任务时的 iBMI 性能。具体来说,我们测试了 PCA、dPCA 和 NMF 是否可以压缩和去噪大脑和肌肉数据并提高解码器在任务中的泛化能力。我们的结果表明,虽然所有方法都能有效地压缩数据,同时解码精度损失最小,但没有一种方法能通过去噪来提高性能。此外,没有任何方法能增强跨任务的泛化能力。这些发现表明,虽然降维可以帮助数据压缩,但单独使用降维可能无法揭示提高解码器性能或泛化能力所需的“真实”控制空间。需要进一步研究以确定协同作用是否是最佳控制框架,或者是否需要替代方法来增强 iBMI 应用中解码器的鲁棒性。

探索脑机接口的协同作用

探索脑机接口的协同作用PDF文件第1页

探索脑机接口的协同作用PDF文件第2页

探索脑机接口的协同作用PDF文件第3页

探索脑机接口的协同作用PDF文件第4页

探索脑机接口的协同作用PDF文件第5页