由于疾病的复杂性以及研究人员采用的多种方法,解决癌症机制具有挑战性。在本研究中,对 40 篇肿瘤学论文进行了信息检索,以获得作者关于肿瘤免疫微环境 (TIME) 或器官特异性研究的方法。合并并分析了 20 篇 TIME 摘要,以产生有价值的见解,关于基于研究的论文如何补充来自评论论文的信息,使用大型语言模型 (LLM) 上下文比较,然后生成代码以在知识图谱中说明每位作者的方法。接下来,获得了 20 篇影响历史论文的组合器官特异性新兴论文,作为更新 Zhang, Y., et al. 机制的数据源,该机制进一步由 LLM 转换为代码。新的信号通路结合了另外四位作者的癌症研究领域,然后是它们对原始 Zhang, Y., et al. 通路的好处。研究中 40 篇论文超过 60 万字,重点关注特定领域,总计约 17,000 字,由 Clau-3Opus 提供详细且可重复的报告。ChatGPT o1 基于这些作者的方法提供了高级推理,具有广泛的相关性和引用。ChatGPT o1 生成的 Python 或 LaTeX 代码添加了可视化对话式 AI 发现的方法,以更好地理解癌症研究的复杂性。
主要关键词