Loading...
机构名称:
¥ 2.0

服务、运输和物流或服务提供领域的人工智能对社会现在和未来影响的日益凸显引发了激烈的争论(Makridakis 2017 )。与过去的通用技术一样,人工智能有可能颠覆全球范围内几乎所有行业和企业。最近的研究通过分析人工智能专利申请和人工智能相关科学出版物的演变,调查了近几十年来人工智能技术发展的激增(De Prato 等人 2018 年;欧盟委员会 2018 年;Fujii 和 Managi 2018 年;Cockburn 等人 2019 年;Van Roy 等人 2020 年;世界知识产权组织 2019 年)。这些研究中出现的人工智能创新格局揭示了类似的模式;人工智能的最大增长发生在过去五年里,由中国、日本、韩国和美国主导。尽管人工智能的发展主要集中在电信和软件服务以及电子制造业,但有明显迹象表明,几乎所有其他行业都在越来越多地利用人工智能技术带来的新程度自动化的机会。虽然研究人员对人工智能的上升趋势和变革性质达成了共识,但对其经济影响和生产力价值的推测性解释尚无定论,这与流行的索洛悖论中综合提出的担忧相呼应:“除了生产力统计数据外,你随处可见计算机时代”(Solow 1987,第 36 页)。更为积极的文献认为,人工智能技术的颠覆性内容将通过任务自动化、不确定性的减少、现有创新的重组和新创新的产生(Agrawal 等人,2019a、b;Cockburn 等人,2019)产生,从而提高生产率(Brynjolfsson 等人,2019)。与此形成鲜明对比的是,其他理论模型预测,由于不平等加剧(Gries 和 Naudié,2018)、学习成本(Jones,2009)以及与其他通用技术相比人工智能的颠覆率较低(Gordon,2016、2018),当前的生产率放缓可能会持续下去。除了这些截然不同的预测之外,人们越来越需要通过定量分析来衡量人工智能对增长、生产力和就业等经济结果的影响,但对高质量企业层面数据的要求是一个重要障碍(Raj 和 Seamans 2019;Furman 和 Seamans 2019)。最近才出现实证研究来帮助更好地理解人工智能对企业劳动生产率的影响,而且仅限于少数论文(例如 Graetz 和 Michaels 2018;Alderucci 等人 2020)。据我们所知,没有一篇实证论文在考虑因果关系的同时量化人工智能技术对企业生产率的影响。本研究旨在通过进一步的、新颖的实证证据填补先前研究中观察到的空白。我们使用人工智能的综合定义(指包括机器人在内的软件和硬件组件的组合)并盘点了创新人工智能格局的文献(Van Roy 等人,2020 年),采用一个包含 5257 家人工智能专利申请公司的独特数据库来评估人工智能技术对企业劳动生产率的影响。我们使用来自四大洲的全球样本来测试这种潜在影响,这些公司在 2000 年至 2016 年期间提交了至少一项与人工智能领域相关的专利,结合欧洲专利局全球专利统计数据库 (PATSTAT) 中的专利申请

人工智能对劳动生产率的影响

人工智能对劳动生产率的影响PDF文件第1页

人工智能对劳动生产率的影响PDF文件第2页

人工智能对劳动生产率的影响PDF文件第3页

人工智能对劳动生产率的影响PDF文件第4页

人工智能对劳动生产率的影响PDF文件第5页