智能手机、智能家居、智能导航等都是人工智能(AI)在日常生活中的重要应用。人工智能最早出现于20世纪50年代,随着对它的认识和重新定义,人工智能逐渐被提出。目前,人工智能被定义为研究和开发用于模拟、扩展和增强人类智能的理论、方法、技术和应用系统的一门新技术科学(1)。我们目睹了人工智能的快速发展,其在医疗保健,特别是医学图像处理和分析方面的研究和应用方兴未艾。与更易于获取且采集过程更容易标准化的计算机断层扫描(CT)和磁共振成像(MRI)相比,正电子发射断层扫描(PET)更昂贵、获取范围更广,其更复杂的技术操作过程给标准化图像采集带来了困难。虽然AI在PET领域的研究和应用进展相对较慢,但由于PET作为分子影像的重要领域,AI在PET成像领域的应用正受到广泛的关注,成为研究热点。在技术层面,针对不同厂家、不同仪器型号、不同成像技术的PET扫描仪在成像过程中参数和质量的差异性,开展了图像后处理研究,包括图像标准化、归一化、小波变换、高斯变换、特征预处理等。AI赋能的分割技术进一步提高了AI特征的稳定性和AI研究的可重复性(2、3)。为了满足临床应用的需求,通过深入挖掘图像特征,结合人群和临床证据,构建机器学习模型,PET 中的 AI 已被开发用于病变检测和边界描绘、诊断和鉴别诊断、风险预测和预后评估,甚至预测临床基因或分子分型( 1 , 4 – 7 )。本研究主题包括 11 篇出版物,强调了 AI 如何支持 PET 图像处理和分析。最近,许多研究小组一直致力于将 AI 用于 PET 图像解释,例如病变检测。Kawakami 等人应用对象深度学习 (DL) 检测模型 You Only Look Once Version 2 (YOLOv2) 来检测 18 F-FDG PET 中的生理和异常摄取。)。)。结果表明,MIP 图像上的生理摄取被快速准确地识别(Kawakami 等人。YOLOv2 检测到的异常摄取与手动识别的覆盖率较高(Kawakami 等人。精确的检测和快速的反应将成为疾病诊断的有用工具。最大标准化摄取值 (SUVmax) 是解释图像和评估的最常用参数
主要关键词