Loading...
机构名称:
¥ 4.0

生成式人工智能 (AI) 有可能大大提高抗体设计的速度、质量和可控性。传统的从头抗体发现需要耗费大量时间和资源来筛选大型免疫或合成库。这些方法对输出序列的控制也很少,这可能导致先导候选药物结合效果不佳且可开发性较差。几个研究小组已经引入了生成式抗体设计模型,并获得了有希望的计算机证据 [1–10],但是,没有一种方法能够通过实验验证基于 AI 的生成式从头抗体设计。在这里,我们使用生成式深度学习模型以零样本方式从头设计针对三个不同靶标的抗体,其中所有设计都是单轮模型生成的结果,没有后续优化。具体来说,我们使用高通量湿实验室功能筛选了超过 100 万种设计用于结合人表皮生长因子受体 2 (HER2) 的抗体变体。我们的模型成功设计了抗体重链中的所有 CDR,并计算了通过结合校准的似然度。我们分别实现了重链 CDR3 (HCDR3) 和 HCDR123 设计的 10.6% 和 1.8% 的结合率,比从观察到的抗体空间 (OAS) 中随机抽样的 HCDR3 和 HCDR123 高四倍和十一倍 [11]。我们进一步使用表面等离子体共振 (SPR) 表征了 421 种 AI 设计的结合剂,发现其中三种比治疗性抗体曲妥珠单抗结合更紧密。这些结合剂高度多样化,与已知抗体的序列同一性低,并采用可变的结构构象。此外,这些结合剂在我们之前引入的自然性指标 [12] 上得分很高,表明它们可能具有理想的可开发性特征和低免疫原性。我们开源 1 HER2 结合剂并报告测得的结合亲和力。这些结果为利用生成式人工智能和高通量实验加速新治疗靶点的药物创造开辟了道路。

利用生成人工智能解锁从头抗体设计

利用生成人工智能解锁从头抗体设计PDF文件第1页

利用生成人工智能解锁从头抗体设计PDF文件第2页

利用生成人工智能解锁从头抗体设计PDF文件第3页

利用生成人工智能解锁从头抗体设计PDF文件第4页

利用生成人工智能解锁从头抗体设计PDF文件第5页

相关文件推荐

2024 年
¥1.0
2012 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥8.0
2022 年
¥4.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2020 年
¥9.0