2024 年有望成为量子计算的突破之年。我们即将看到量子和人工智能 (AI) 之间共生关系的出现。这具有巨大的潜力,可以推动这两个领域的进步,突破可能的界限。由于我们终于达到了摩尔定律的极限,我们需要替代方法来提高计算性能。将量子计算与人工智能结合起来正在开启一些令人兴奋的可能性。它是双向的。我们可以越来越多地使用人工智能来检测和补偿量子计算中的异常——目前阻碍其快速发展的因素——另一方面,利用量子计算来扩展人工智能的发展。我们能够利用量子系统的巨大计算能力只是时间问题——这将推动药物发现等领域的突破,并通过在眨眼间处理复杂算法的能力彻底改变金融市场。但一些专家表示,我们可能还需要 10 年才能达到这一点。尽管有可能比传统的硅基计算快很多倍,但这项技术仍然容易出错。用于量子计算的量子比特必须足够稳定才能产生有意义、准确的结果。如果它们不稳定,那么结果就不可靠。尽管我们在获得和保持量子系统稳定状态方面取得了进展,但进展仍然不够快。当然,启动和运行量子计算机比传统计算机要复杂一些。在超导量子比特技术中,量子比特使用微波进行控制和测量。它们本质上很脆弱,容易受到周围环境噪声的影响——这意味着它们会受到热噪声、电磁干扰和材料缺陷等因素的影响。即使是简单的操作或测量也会导致错误。这意味着量子计算必须始终在高性能计算系统上进行交叉检查——这一事实严重削弱了当前量子计算机的实用性。尽管 HPC 系统是世界上最强大的传统计算机,但在某些计算中,其速度比量子计算机慢很多倍。如今,为了微调量子比特,我们手动优化微波脉冲的形状——但规模有限,因为实际上,人类根本不可能同时对数十个量子比特进行这样的优化。这时,人工智能就可以发挥作用了。它可以学习如何优化微波脉冲,以便更好地同时控制多个量子比特,从而减少量子误差。除此之外,人工智能还可以用来识别哪些量子比特应该优先用于特定的量子计算。另一方面,更强大的量子计算将推动更快、更先进的人工智能系统的开发。而且,您无需成为量子专家即可了解这种组合为何如此令人兴奋。2024 年,我们还可能看到优化任务分配的发展。在这里,我们将改进 AI 驱动的计算代理来评估计算任务,并确定它们是否更适合量子计算机、传统计算机或混合组合。这是因为在许多任务中,高性能计算机 (HPC) 的速度仍然比量子计算机更快——例如,在乘法和加法等简单的数学函数中。随着我们利用 AI 算法来优化操纵量子位的方式,它可能会带来更稳定的量子操作:这是一项关键的突破,它将使我们能够迅速增加量子系统中可靠量子位的数量,超过我们今天达到的 100 个量子位。富士通正在与日本研究机构 RIKEN 合作,共同完成一项任务,通过增强硬件和软件功能将量子技术的使用率提高到 1,000 个量子位。该方法结合了 DMET(密度矩阵嵌入理论),该理论为在存在周围分子或本体环境的情况下处理有限片段提供了一个理论框架,即使片段之间存在很大的相关性
主要关键词