附属机构:¹爱尔兰皇家外科医学院 (RCSI) 解剖与再生医学系组织工程研究组,123 St. Stephen's Green,都柏林 2,D02YN77,爱尔兰²先进材料与生物工程研究 (AMBER) 中心,RCSI 123 St Stephen's Green,都柏林 2,D02YN77,爱尔兰。 3 都柏林圣三一学院化学学院、自适应纳米结构和纳米器件研究中心(CRANN)和先进材料生物工程研究中心(AMBER),都柏林 2,爱尔兰 4 都柏林大学物理学院,都柏林圣三一学院(TCD),爱尔兰 5 都柏林圣三一学院(TCD)三一生物医学工程中心,爱尔兰*通讯作者:电子邮件:fjobrien@rcsi.ie 摘要:目前尚无针对中枢神经系统神经创伤的有效治疗方法,但电刺激方面的最新进展表明其在神经组织修复方面有一定前景。我们假设,将导电生物材料结构化整合到组织工程支架中可以增强神经再生的电活性信号传导。导电 2D Ti 3 C 2 T x MXene 纳米片由 MAX 相粉末合成,表现出与神经元、星形胶质细胞和小胶质细胞的优异的生物相容性。为了实现这些 MXenes 的空间控制分布,采用熔融电写技术 3D 打印出具有不同纤维间距(低、中、高密度)的高度有序的 PCL 微网,并用 MXenes 对其进行功能化,以提供高度可调的导电性能(0.081±0.053-18.87±2.94 S/m)。将这些导电微网嵌入神经营养、免疫调节透明质酸基细胞外基质 (ECM) 中,可产生柔软、支持生长的 MXene-ECM 复合支架。在这些支架上接种的神经元受到电刺激,促进神经突生长,受微网中纤维间距的影响。在多细胞细胞行为模型中,与低密度支架和不含 MXene 的对照相比,在高密度 MXene-ECM 支架上刺激 7 天的神经球表现出显著增加的轴突延伸和神经元分化。结果表明,神经营养支架中导电材料的空间组织可以增强对电刺激的修复关键反应,并且这些仿生 MXene-ECM 支架为神经创伤修复提供了一种有前途的新方法。关键词:组织工程、3D 打印、导电、生物材料、MXene、支架、神经。
主要关键词