当前的能量和移动性转化,在很大程度上依赖电动汽车(EV)和可再生能源需要电池。锂离子电池是重塑我们的运输系统的主要候选者。尽管已经主导了电动汽车市场的能源储能组件,但锂离子电池仍存在与易燃液体电解质有关的安全问题。此外,它们接近达到最大能量密度。替代电池技术,更安全且能够存储更多的能量,因此引起了极大的兴趣。一个突出的例子是使用陶瓷或聚合电解质及其复合材料的固态电池。本文探讨了内部处理和表征技术,以研究所有固态锂电池的无机电解质的过程,并提高无机电解质的性能。无机电解质是具有高离子电导率的固体,可以使具有高功率和能量密度的安全电池。但是,在达到商业化之前,需要克服许多挑战。进步与了解控制离子传输的属性有关。本文的一个焦点是用硼酸处理电解质材料Li 7 La 3 Zr 2 O 12(LLZO)。这种表面处理似乎可以应对有害的Li 2 CO 3的形成,因此,均针对烧结的陶瓷电解质颗粒和LLZO粉末进行了探索。分别通过分析对烧结的影响以及在聚合物电解质矩阵中实施粉末时分别评估了该策略。与酸接触,LLZO形成了一个对电导率有益影响的Libo 2层。对于llzo粉末,酸处理在烧结后产生了有希望的谷物结合的固体。掺入聚合物电解液中时,较高的离子电导率表明Libo 2层对聚合物陶瓷接触的有益作用。另一个有希望的无机电解质是Li 1+X Al X Ti 2-X(PO 4)3(LATP),其易于处理和高电导率被其不稳定性与锂金属所遮盖。作为保护LATP材料的一种策略,它已插入不同的聚合物电解质矩阵中。虽然复合材料通常在材料之间表现出较差的协同作用,但对于多种植者来说,有一些令人鼓舞的结果,尤其是高转移数量。总而言之,这些结果为了解如何使用陶瓷电解质制造功能性的全州电池提供了一步,以及在陶瓷和复合电解质中量身定制表面的重要性。
主要关键词