Loading...
机构名称:
¥ 1.0

有机太阳能电池(OSC)是一种可以将光能转化为电能的设备,它们具有轻巧,灵活,可加工的印刷和大面积的生产的优势,并且是减轻能量降低智能和环境污染的有效方法。由于供体和受体材料的快速发展,主动层形态的优化以及处理技术的成熟度,OSCS的功率转换效率(PCE)超过了19%。通常,OSC由阳极,阴极,电子,孔传输层和一个活动层组成,并且设备性能与活动层的形态密切相关。众所周知,OSC的光物理转换过程包括光子吸收,激子扩散,激子分离,电荷转运和收集。通常,活性层的厚度和成分对光子的吸收具有深远的影响。激子扩散的效率取决于活性层的域大小,crys-钙度和分子取向通常会影响激子分离的过程,并且互穿网络(双连续相分离)是电荷运输和收集的导电性。但是,由于结晶和相分离之间的竞争耦合关系,活动层的形态是无法控制的。因此,已经做出了强烈的努力来优化OSC的形态。简要摘要与本社论中的每本选定论文相关的内容如下:光子吸收对于激子的产生至关重要。在此标题为“有机太阳能电池中的形态控制”的社论中,我们将提供有关如何优化活性层形态的综合观点,以扩展对形态和设备性能之间关系的理解。这本标题为“有机太阳能电池中形态控制的形态控制”的社论呈现六篇论文,包括通过调节活性层的厚度[1]来提高光子的吸收效率[1],并添加第三个成分以制造三元太阳能电池[2],从而通过增强的近距离网络来改善Bilerec and septiser and septiser and septiser [3]结晶度[4],采用侧链工程来调节分子方向[5],最后是制造具有较高设备性能的大区块和灵活的OSC的建议[6]。活性膜的厚度在光子吸收的效率中起着重要作用。在穆罕默德·塔希尔(Muhammad Tahir)[1]中,作者研究了活性层的光学特性,形态和厚度之间的关系。根据UV-VIS吸收光谱和AFM图像,很明显,当纤维厚度在适当的范围内,即PFB 180 nm(即PCBM混合物)中时,某些粗糙度和不均匀的表面更适合于更好的光捕获,从而获得了高尺度的电流密度(因此获得了较高的速度速度电流密度(J SC)。这项工作表明,优化活性层的厚度对于设计具有较高光伏性能的设备是必需的。三元策略也通常被认为是改善光子吸收

有机太阳能电池中的形态控制

有机太阳能电池中的形态控制PDF文件第1页

有机太阳能电池中的形态控制PDF文件第2页

有机太阳能电池中的形态控制PDF文件第3页

相关文件推荐

2023 年
¥2.0
2023 年
¥1.0
2022 年
¥1.0
2024 年
¥4.0