Loading...
机构名称:
¥ 2.0

在20世纪末,由于其较高的计算能力,计算机科学中的模拟系统已被数字系统广泛取代。然而,直到现在,这个问题一直在吸引人:大脑模拟还是数字化?最初,后者受到青睐,将其视为像数字计算机一样工作的图灵机。最近,最近,数字和模拟过程已结合在一起,将人类行为植入机器人中,从而赋予了人工智能(AI)。因此,我们认为将数学模型与大脑中计算的生物学进行比较是及时的。为此,突出了中枢神经系统中细胞和分子相互作用中明确鉴定的数字和模拟过程。,但在此期间,我们试图查明将计算机计算与生物计算显着特征区分开的原因。首先,在电气突触和通过间隙连接中观察到了真正的模拟信息处理,后者在神经元和星形胶质细胞中均观察到。显然与此相反的是,神经元动作电位(AP)或尖峰明显代表数字事件,例如Turing Machine的是/否或1/0。然而,尖峰很少均匀,但幅度和宽度可能会有所不同,这对突触前末端的发射机释放具有显着的差异作用,尽管量化(囊泡)释放本身是数字的。相反,在突触后神经元的树突部位,有许多计算的模拟事件。此外,信息的突触传播不仅是神经元的,而且由星形胶质细胞紧密地影响大脑中的大多数突触(三方突触)。至少在这一点上,LTP和LTD修改了突触可塑性,并被认为可以诱导短期和长期记忆过程,包括合并(等效于电子设备中的RAM和ROM)。当前有关大脑存储和检索记忆如何包括各种选项的知识(例如,神经元网络振荡,Engram细胞,星形胶质细胞合成菌)。表观遗传特征在记忆形成及其巩固中也起着至关重要的作用,这必然指导了基因转录和翻译等分子事件。总而言之,大脑计算不仅是数字或类似物,还是两者的组合,而且涵盖了并行的功能,并且具有更高的复杂性。

人脑的计算能力

人脑的计算能力PDF文件第1页

人脑的计算能力PDF文件第2页

人脑的计算能力PDF文件第3页

人脑的计算能力PDF文件第4页

人脑的计算能力PDF文件第5页