层次结构,分布式和大脑启发的物联网系统的学习
机构名称:
¥ 1.0

摘要 - 在本文中,我们提出了Edgehd,这是一种层次结构 - 意识到的学习解决方案,以高度分布,具有成本效益的方式进行在线培训和推断。我们使用受脑启发的高维(HD)计算作为关键启用器。HD计算在高维空间上执行计算任务,以模仿人类记忆的功能,例如数据间关系推理和信息聚集。EdgeHD利用高清计算有效地学习各个设备上的分类模型,并通过层次结构的IoT节点组合模型,而没有高通信成本。我们还提出了一种硬件设计,该设计可以加速低功耗FPGA平台上的EdgeHD。我们评估了各种现实分类应用程序的EdgeHD。评估表明,EdgeHD通过降低的通信提供了高度有效的计算。例如,与集中的学习方法相比,EdgeHD平均达到3.4×和11.7×(1.9×和7.8×)的加速和能量效率提高(推断)。,培训的沟通成本降低了85%,推理降低了78%。I. i ntroduction机器学习方法已被广泛用于为许多认知任务提供高质量。运行复杂的学习任务需要高计算成本来处理大量学习数据。一个常见的解决方案是将云和数据中心用作主要的中央计算单元。在物联网系统中,部署了大量嵌入式设备以从环境中收集数据并产生信息。然而,随着物联网(IoT)的出现,集中式方法面临着针对高性能计算的几个可扩展性挑战[1],[2],[3],[4],[4],[5],[6]。需要汇总部分数据才能执行IoT网络中的目标学习任务,例如家庭或城市规模。因此,它导致高潜伏期的高沟通成本,将所有数据点传输到集中式云。最近的研究工作研究了如何以分布式方式扩展学习任务,其中数据是从不同设备收集的。研究的主流通常被称为联邦学习[7],[8],[9],[2]。例如,[10]中的研究在多个设备上训练一个中央深神经网络(DNN)模型,在这些设备中,每个设备的数据具有相同的功能集。但是,在物联网层次结构中有效学习仍然是一个悬而未决的问题。我们认识到以下技术挑战

层次结构,分布式和大脑启发的物联网系统的学习

层次结构,分布式和大脑启发的物联网系统的学习PDF文件第1页

层次结构,分布式和大脑启发的物联网系统的学习PDF文件第2页

层次结构,分布式和大脑启发的物联网系统的学习PDF文件第3页

层次结构,分布式和大脑启发的物联网系统的学习PDF文件第4页

层次结构,分布式和大脑启发的物联网系统的学习PDF文件第5页

相关文件推荐

大脑如何学习
2023 年
¥4.0
学习大脑
2020 年
¥1.0
通过学习改变大脑
2023 年
¥1.0
学习大脑实验室
2024 年
¥1.0