多学科设计优化是航空航天工业面临的持续挑战,导致设计交付周期长和优化潜力尚未开发。量子计算可能为实现覆盖整个设计空间的高效多参数优化提供一条可行的途径。在这里,我们要求将量子计算解决方案应用于涉及机身载荷、质量建模和结构分析的问题。目标是在优化重量的同时保持结构完整性。重量优化是降低运营成本和减少环境影响的关键。挑战出现在同时计算各种飞机设计配置时,而这目前无法通过传统计算实现。通过模拟适航法规要求的关键飞行事件来证明结构完整性。选择一个代表性案例并以简化形式呈现为挑战。飞机模型在各种燃料分布和各种飞行条件下承受静态(时间无关)机动载荷或动态阵风载荷(时间相关)。应优化翼盒的结构尺寸参数以获得最小重量解决方案。本质上,在最简单的情况下,我们正在寻找一个结构参数向量 p,使得与质量相对应的线性函数 w(p) 最小化,同时满足以下约束:对于由 p 参数化的固定矩阵 K 和向量 F j ,线性系统集 𝐾(𝑝)〈𝑥〉= 𝐹 𝑗 ,对于给定的储备函数 RF,有一个解 𝑅𝐹(〈𝑥〉) > 1 。在技术档案中描述了更复杂的情况。请注意,位移 〈𝑥〉 会转换为内部载荷,而内部载荷可能取决于参数。因此,最好使用基于应力许用值的应力约束,其中 RF 是约束与最小值(负值)或最大值之间的比率。可能还可以使用冯·米塞斯极限。
主要关键词