Loading...
机构名称:
¥ 1.0

进入门槛低。虽然经典的基于胶带的剥离方法易于学习,但在扩展方面受到严重限制。[1,2] 理想情况下,不仅应保持起始晶体的高质量,而且其横向尺寸也应反映在剥离产率中。在这里,金介导的剥离开始大放异彩,[3–8] 其中干净光滑的金表面提供了必要的相互作用,以剥离整个层状材料阵列。[4,5] 所得单层区域主要受母晶区域限制,接近 1 的剥离产率,从而允许大规模单层作用。[3,9–11] 这种相互作用本质上是非共价的,并且高度依赖于金表面的状况,即使是轻微的污染也会降低剥离产率。 [5] 最近,界面应变被认为是金介导剥离成功的另一个关键因素,通过破坏层间堆叠促进单层剥离。[12,13] 如前所述,将金的成功剥离扩展到其他贵金属被证明是困难的。[12] 以 MoS 2 为例,按照纯结合能论证,其他几种贵金属应该能够实现类似的性能。然而,金仍然无人能及,与下一个最佳竞争对手银相差两个数量级。[12] 其他金属(如铂、钯和铜)的表现甚至更差。[12] 这些金属性能不佳的原因是缺乏抗氧化性和金属贵重性降低。[12] 然而,银的表现优于铂和钯,使其成为所述趋势的异常值。这一例外是由于晶格失配导致 MoS 2 /Ag 界面处应变过大。不过,较大的应变分散暗示了应变不均匀,这是由于银界面的氧化造成的。很明显,成功的金属介导剥离的两个关键因素是均匀施加在界面上的大界面应变和无氧化物金属表面的清洁度。[5,12] 平衡这两个因素是高单层剥离产量的关键,迄今为止这对银来说很难做到。金通过高抗氧化性和在剥离前精心准备新鲜表面来实现这一点。获得适合此任务的金属表面的一种方法是模板剥离。[14,15] 使用热蒸发在光滑的模板(例如抛光硅晶片)上覆盖一层薄薄的金属层(≈ 200 纳米)。该膜可以通过

低温加热银介导的 MoS2 剥离

低温加热银介导的 MoS2 剥离PDF文件第1页

低温加热银介导的 MoS2 剥离PDF文件第2页

低温加热银介导的 MoS2 剥离PDF文件第3页

低温加热银介导的 MoS2 剥离PDF文件第4页

低温加热银介导的 MoS2 剥离PDF文件第5页