摘要:在过去的几十年中,微电子行业一直在积极研究除数字逻辑和存储器之外的半导体器件功能集成的潜力,包括在同一芯片上集成射频和模拟电路、生物芯片和传感器。在气体传感器集成的情况下,未来的器件必须使用与数字逻辑晶体管工艺兼容的制造技术来制造。这可能需要采用成熟的互补金属氧化物半导体 (CMOS) 制造技术或与 CMOS 兼容的技术,因为该技术具有固有的低成本、可扩展性和大规模生产潜力。虽然化学电阻半导体金属氧化物 (SMO) 气体传感器是过去研究的主要半导体气体传感器技术,并最终实现商业化,但它们需要高温操作来为分子检测环境中气体所必需的表面化学反应提供足够的能量。因此,在 MEMS 结构中集成微加热器是一项要求,这可能非常复杂。因此,这是不可取的,人们正在研究和寻求室温或至少接近室温的解决方案。使用紫外线照射已经实现了室温 SMO 操作,但这进一步使 CMOS 集成复杂化。最近的研究表明,二维 (2D) 材料可以为这个问题提供解决方案,因为它们很有可能与复杂的 CMOS 制造集成,同时即使在室温下也能对大量目标气体提供高灵敏度。本综述讨论了许多类型的有前途的 2D 材料,由于存在足够宽的带隙,这些材料显示出作为数字逻辑场效应晶体管 (FET) 的通道材料以及化学电阻和基于 FET 的传感膜集成的巨大潜力。本综述不包括石墨烯,而研究了使用氧化石墨烯、还原氧化石墨烯、过渡金属二硫属化物 (TMD)、磷烯和 MXenes 在气体传感方面取得的最新成就。
主要关键词