摘要靶介导药物处置 (TMDD) 模型用于模拟非线性药代动力学 (PK),因为一种药物与其药理靶标以高亲和力结合,影响药代动力学特性。TMDD 近似模型的出现是因为在有限的数据下难以实现完整的 TMDD 模型来解决复杂模型的过度参数化问题。传统的群体 TMDD 模型开发既耗时又主观,需要建模者的经验。本论文提出了一种 TMDD 模型开发和排序策略,可以实现自动 TMDD 模型开发。当前的工作旨在建立一种可以自动化扩展到 Pharmpy/Pharmr 包的 TMDD 模型开发策略,以使自动模型开发 (AMD) 工具能够对非线性 PK 进行更复杂的描述。使用已发布的五种化合物 TMDD 模型的模拟数据来开发和测试 TMDD 模型开发策略。首先,根据文献和自动模型开发程序的实际考虑选择合适的估计方法,以提高建模效率。其次,提出了一种在模型开发过程中设置新参数初始估计值的算法,并在两个具有潜在代表性的 TMDD 近似模型上进行了测试,以便于估计收敛。测试了似然比检验 (LRT) 和贝叶斯信息准则 (BIC) 作为模型选择标准。最后,提出了完整的 TMDD 模型开发策略,并用五个模拟数据进行了测试。在结构模型搜索后,选择准稳态模型 (QSS) 而不是米氏近似模型 (MMAPP) 作为代表性 TMDD 近似模型,并发现足以识别正确的结构模型。其他 TMDD 模型从 QSS 模型更新了初始估计值,其中目标降解速率常数 (KDEG) 和基线目标浓度 (R0) 的初始估计值的不同梯度也提供了合理的目标函数值 (OFV)。鉴于 BIC 的排序标准和模型开发策略,每个数据的最佳模型至少与模拟模型一样复杂。此外,4/5 的数据对那些非目标相关参数给出了准确的估计,并且 OFV 并不比以“真实”参数作为初始估计的模型差很多。总之,所提出的 TMDD 模型开发策略简化了 TMDD 模型的开发和选择,并且有可能在 AMD 中实施以实现自动 TMDD 模型开发。
主要关键词