Loading...
机构名称:
¥ 2.0

摘要 - 本文解决了不典型的域适应性(UDA)中的两个重要挑战,重点是利用视觉培训预训练(VLP)模型的力量。首先,UDA主要依赖于ImageNet预训练的模型。但是,UDA中VLP模型的潜力在很大程度上尚未探索。VLP模型的丰富表示形式具有增强UDA任务的信号。为了解决这个问题,我们提出了一种称为跨模式知识蒸馏(CMKD)的新颖方法,利用VLP模型作为教师模型来指导目标领域的学习过程,从而导致了最新的表现。其次,当前的UDA范式涉及为每个任务培训单独的模型,从而导致大量存储开销和不切实际的模型部署,随着转移任务的增加。为了克服这一挑战,我们引入了剩余的稀疏训练(RST),利用了VLP广泛的预训练所带来的好处,该技术需要最小的调整(约0.1%〜0.5%)的VLP模型参数,以实现性能比较与罚款。结合了CMKD和RST,我们提出了一个综合解决方案,该解决方案有效地利用VLP模型来实现UDA任务,同时减少存储开销用于模型部署。此外,CMKD可以与其他方法一起用作基线,例如FixMatch,增强UDA的性能。我们提出的方法在标准基准测试上优于现有技术。我们的代码将在以下网址提供:https://github.com/wenlve-zhou/vlp-uda。

设计用于检查隧道施工环境的自主无人机原型

设计用于检查隧道施工环境的自主无人机原型PDF文件第1页

设计用于检查隧道施工环境的自主无人机原型PDF文件第2页

设计用于检查隧道施工环境的自主无人机原型PDF文件第3页

设计用于检查隧道施工环境的自主无人机原型PDF文件第4页

设计用于检查隧道施工环境的自主无人机原型PDF文件第5页

相关文件推荐

2018 年
¥70.0
2018 年
¥70.0