董事,尼日利亚港口大学bourdillon.omijeh@uniport.edu.ng摘要的摘要准确的温室气体预测(GHG)排放对于解决气候变化和指导有效的缓解策略至关重要。我们开发并测试了高级技术,以改善时间序列的温室气体排放预测,以解决现有模型的局限性。我们的研究探索了各种算法,包括Arima,Sarima,ETS,先知和TBAT,以确定最有效的方法,用于捕获尼日利亚河流Harcourt港特有的温室气体数据中复杂的季节性和非线性模式。我们使用ADF和KPSS测试测试了时间序列的平稳性。使用网格搜索和Akaike信息标准(AIC)优化了其处理趋势和季节性组件的能力和季节性组件的能力。然后,我们将其与Arima,Sarima,Prophet和TBATS模型进行了比较。ETS模型的表现优于其他模型,在观察到的数据的95%置信区间内预测了CO₂值,平均绝对误差(MAE)为14.82,而根平方误差(MSE)为18.91。这项研究标志着温室气体排放预测的重大进步,强调了调整模型在环境科学中的实践价值及其与政策决策的相关性。未来的工作应着重于完善这些模型以实时使用,以确保计算效率和预测精度之间的平衡,以为决策者和环境科学家提供可行的见解。关键字:时间序列,发射,温室气体,预测,指数平滑。简介预期温室气体(GHG)排放对于制定有效减轻气候变化的策略至关重要。2023年,国际能源局(IEA)报告说,全球能源相关的二合作的排放量增长了1.1%,达到创纪录的37.4 gigatonnes(GT)(GT)(IEA,2023年)。这强调了气候缓解当局深入了解当前和未来排放趋势的重要性,以开发和实施有效的对策。本文回顾了用于温室气体排放预测的预测模型和算法,检查了其优势和缺点,如先前的研究中所强调的那样。重点是了解对这些低效率的研究如何指导预测准确性的改善。温室气体(温室气体)是捕获并重新发射红外辐射的大气气体,导致温室效应。尽管这种作用对于维持生命的温度至关重要,但人类活动(例如燃烧化石燃料和森林砍伐)却显着增加了温室气体排放,导致全球变暖和气候变化(英国地质调查,2023年)。二氧化碳(CO₂),主要的温室气体,主要是通过燃烧化石燃料(例如煤炭,石油和天然气)以及工业
主要关键词