Loading...
机构名称:
¥ 1.0

Alex Robinson 1,Jack Wells 1,2,Daniel Nicholls 1,Giuseppe Nicotra 3,Nigel Browning,Nigel Browning 1,4 1 Senseai Innovations Ltd.,英国利物浦,2分布式算法算法,博士培训中心,英国利物浦,英国3 Cnr-immmmmmmmmm,liver-immmmm,liver-imm,liver-imm,liver-imm,italy italy,4扫描透射电子显微镜(Stem)可以捕获与材料的结构和化学性质相对应的多种信号。这些方法的示例包括明亮/暗场成像,能量分散X射线光谱(EDS)或电子能量损失光谱(EELS)[1]。由于其对低质量元素的敏感性以及确定其氧化态,化学键合和空间分布的能力,因此特别感兴趣。由于信号较低,梁的能量扩散以及检测器的灵敏度,鳗鱼光谱挑战很大。此外,由于采集速度,样本的稳定性被妥协,这是信号限制和相机读出速度的组合。克服这些局限性的一种解决方案是使用探针子采样,仅获取相对于典型扫描网格的探针位置的子集。这已显示出适用于各种茎技术,例如2-D成像,EDX和4-D茎[2,3]。我们的目标是将这些相同的策略应用于鳗鱼的获取,以提高速度,同时维持材料的结构和化学分析。将聚焦的电子探针对齐,并将扫描线圈连接到扫描发生器,以允许定制的扫描模式。此过程如图然后将电子探针定位在子采样的探针位置,并获得了鳗鱼光谱。对于实时成像,可以使用Beta过程因子分析(BPFA)算法[4]的GPU实现来覆盖能量损失的子集[4],以使探针更加比对。对于离线分析,数据被重塑以形成一个3-D数据集,其中第一个两个维度对应于探针位置,最终维度是特定的能量损失。然后,使用3D补丁的BPFA对此数据进行覆盖。1。为了测试这种方法,我们使用碳脸上生长的石墨烯的硅卡宾枪样品模拟了一个亚采样的鳗鱼实验[5]。数据集包含17x104探针位置,扫描步骤为0.13nm,相机上的能量宽度为0.25EV(2048通道)。仅使用原始数据的25%测试数据集。结果(图1中给出)表明,可以恢复数据,以实现与原始,全采样数据集的功能相同的结果。这项工作表明,通过对采样网格的测量,可以实现原子分辨率鳗鱼。通过采用这些方法,干eels可以更快,较低的剂量,并且重要的是

使用压缩感应

使用压缩感应PDF文件第1页

使用压缩感应PDF文件第2页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2022 年
¥3.0
2024 年
¥2.0
2024 年
¥1.0
2023 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2020 年
¥3.0