Loading...
机构名称:
¥ 1.0

是矩阵非正常行为的定量度量[33,4],这是因为K(a)≥1,例如如果a是正常的。更确切地说,当且仅当M 0(a)= 1达到其全局最小值时,将获得全局最小值k(a)= 1,这是在这些矩阵a a at a at是光谱规范中的收缩。在动态系统的领域之外,例如,k(a)的定量方面在网络分析中引起了人们的关注[4]。尽管我们在这里的主要关注点是矩阵,但值得一提的是C 0 - 操作员半组的情况。这里的左手估计k(a)≤m0(a)从(4)仍然有效,观察到k(a)= 1 = 1表示m 0(a)= 1,在频谱规范中至少在Hilbert Space中获得了Hilbert Space的全局最小值。这两个事实都是Hille-Yoshida定理的简单后果[11]。结论是,即使对于半组,瞬态动力学也可以通过Kreiss常数进行适当评估。虽然Kreiss常数K(A)在许多书籍,文章和文章中受到了广泛的关注,以分析瞬态系统行为的理论数量[33],但最近才解决了其计算。在[24]中,作者与全局搜索同时使用各种本地优化技术来计算具有认证的k(a)。在[33]中,k(a)仅通过绘制比率αϵ(a) /ϵ的比率来估算,并搜索最大值,这似乎是在[23]中开创的。纸张的结构如下。在本文中,我们表明可以使用可靠控制的技术以有限的复杂性来准确地计算kreiss常数k(a)。我们的新特征为更具挑战性的情况开辟了道路,在这种情况下,克里斯常数不仅是构成的,而且更加雄心勃勃,在闭环中最小化,目的是通过使用反馈来限制植物的瞬时生长(1)。简而言之,一个人可能希望使用反馈使闭环A CL更靠近承包瞬态行为,而不是原始矩阵a。这有望在非线性系统的反馈控制中产生后果,众所周知,即使对于良好的抑制抑制型的效应,稳定状态下的雅各布式的非正态性也可能导致较大的瞬态扩增,或者导致非线性效应,或者导致不良极限限制动力学。这种现象在流体动态社区中众所周知[19,28,30,34,26]。在第2节中,我们获得了k(a)的公式,该公式可通过将其与结构化的奇异值或在鲁棒系统分析中知道的结构化奇异值或µ相关联,以合理的效果来计算它。在第3节中,我们扩大了范围,并解决了在闭环中最小化K(A Cl)的问题。由于这是一个NP硬性问题,因此提出了一种快速的启发式,该问题基于非差优化技术。第4节简要概述了这些技术,并显示了如何使用第2节的技术来证明本地优化的结果。数值实验和其他并发技术在第5节中提供。

优化Kreiss常数

优化Kreiss常数PDF文件第1页

优化Kreiss常数PDF文件第2页

优化Kreiss常数PDF文件第3页

优化Kreiss常数PDF文件第4页

优化Kreiss常数PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2024 年
¥2.0
2021 年
¥1.0
2024 年
¥1.0
2025 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2005 年
¥34.0
2020 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0