摘要。我们提供了关于Dykstra的算法与Bregman预测的渐近行为的定量结果,著名的Dykstra算法的组合以及循环Bregman预测的方法,旨在确定最佳近似值,并在非正式设置中解决凸的可行性问题。我们提供的结果是通过证明挖掘的镜头,这是一种数学逻辑中的程序,可以从非效率证明中提取计算形式。具体而言,我们提供了低复杂性亚稳定性的高度均匀和可计算的速率,而且,我们还指定了一般情况,在这些情况下,人们可以获得充分和有效的收敛速率,尤其是欧几里得空间中Polyhedra的情况。作为我们定量分析的副产品,我们也是第一次建立了Dykstra方法与Bregman Projections的强烈收敛性。
主要关键词