Loading...
机构名称:
¥ 2.0

摘要。我们开发了一种调整海冰流变性参数的新方法,该方法由两个组成部分组成:一种用于表征海冰变形模式的新指标和一种基于机器学习的方法(ML)基于调整流变学参数的方法。我们应用了新方法来调整脆弱的宾厄姆 - 麦克斯韦变流变性(BBM)参数,该参数已在下一代海冰模型(Nextsim)中实施并使用。作为参考数据集,我们使用了Radarsat地球物理处理系统(RGP)的海冰漂移和变形观测。度量标准表征了具有值载体的海冰变形场。它包括完善的描述器,例如变形的平均值和标准偏差,空间缩放分析的结构 - 功能以及线性运动学特征(LKFS)的密度和相交。我们将更多描述符添加到表征冰变形模式的度量标准中,包括图像各向异性和Haralick纹理特征。开发的度量可以从任何模型或卫星平台上涂抹冰变形。在参数调整方法中,我们首先运行具有扰动的流动性插曲的Nextsim成员的团队,然后使用相似的数据训练机器学习模型。我们将冰变形的描述作为ML模型和流变参数的输入作为目标。我们将经过训练的ML模型应用于从RGPS观测值计算的描述符。开发的基于ML的方法是通用的,可用于调整任何模型的参数。1 kPa),在参考量表上的内聚力(c ref≈1。00228)。我们使用数十个成员进行了实验,并找到了四个Sextsim BBM参数的光学值:缩放Pa-Rameter的抗压强度(P0≈5。2 mpa),内部摩擦和切线(µ≈0。7)和冰 - 大气阻力系数(ca≈0。与最佳的选言一起运行的次要运行,在视觉上产生海冰变形的地图 -

使用机器学习的海冰模型的调整参数

使用机器学习的海冰模型的调整参数PDF文件第1页

使用机器学习的海冰模型的调整参数PDF文件第2页

使用机器学习的海冰模型的调整参数PDF文件第3页

使用机器学习的海冰模型的调整参数PDF文件第4页

使用机器学习的海冰模型的调整参数PDF文件第5页