用人工智能(AI)摘要影响了诸如面部验证之类的敏感应用的决策过程,以确保决策的透明度,公平性和责任感是很有趣的。尽管存在可解释的人工智能(XAI)技术来澄清AI的决策,但向人类表达这些决定的解释同样重要。在本文中,我们提出了一种结合计算机和人类视野的方法,以提高解释对面部验证的解释性。特别是我们受到人类感知攻击的启发,以了解机器在面部比较任务中如何感知到面对面的人类语义。我们使用MediaPipe,它提供了一种分割技术,该技术可以识别不同的人类语义式区域,从而实现了机器的感知分析。补充说,我们改编了两种模型不足的算法,以对决策过程提供可解释的见解。