Loading...
机构名称:
¥ 1.0

边缘表现出独特的电子特性,具体取决于其翻译矢量(n,m)所描述的边缘配置。12,13近年来,已经合成了一系列具有各种宽度和边缘拓扑结构的GNR,用于基础研究和随后的设备集成。自上而下的方法,包括石墨烯9、14的光刻图案以及碳纳米管的解压缩,15种通常提供缺陷和不确定的边缘结构。与自上而下的方法相比,GNR的自下而上的合成,采用了基于溶液的16和表面辅助方案,17似乎是实现具有统一宽度和定义边缘结构的GNR的强大工具。但是,从溶液中自下而上合成的GNR的沉积是具有挑战性的,并且通常会导致无定形膜。8,16,18地下合成是为设备应用制造高质量GNR组件的一种有前途的方法,尽管仍然需要这些GNR从金属底物转移。通过设计合理的分子单体并利用金属表面的催化性,具有定义结构的GNR可以在大面积上生长。7,8,17迄今为止,大多数原子上精确的GNR已在特定的金属表面上合成,例如Au,17 Ag,19和Cu 20在Ultrahigh真空(UHV)中。然而,UHV合成取决于精致且昂贵的设备,这限制了高质量的GNR的大规模生产。

文章-Lirias

文章-LiriasPDF文件第1页

文章-LiriasPDF文件第2页

文章-LiriasPDF文件第3页

文章-LiriasPDF文件第4页

相关文件推荐

2024 年
¥2.0
2025 年
¥1.0
2023 年
¥4.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2022 年
¥1.0
2020 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0
2020 年
¥1.0
2022 年
¥1.0