天体物理无碰撞激波是宇宙中最强大的粒子加速器之一。超新星遗迹激波是由超音速等离子体流与星际介质剧烈相互作用产生的,据观测,它可以放大磁场 1 并将电子和质子加速到高度相对论速度 2 – 4 。在完善的扩散激波加速模型 5 中,相对论粒子通过反复的激波穿越而加速。然而,这需要一个单独的机制来预加速粒子以实现激波穿越。这被称为“注入问题”,它与电子尤其相关,并且仍然是激波加速中最重要的难题之一 6 。在大多数天体物理激波中,激波结构的细节无法直接解决,因此很难确定注入机制。这里我们报告了激光驱动等离子体流实验和相关模拟的结果,这些实验和模拟探测了在与年轻超新星遗迹相关的条件下湍流无碰撞激波的形成。我们表明,电子可以通过激波向相对论非热能转变过程中产生的小尺度湍流在一阶费米过程中得到有效加速,从而有助于克服注入问题。我们的观测为激波时的电子注入提供了新的见解,并为在实验室内控制研究宇宙加速器的物理原理开辟了道路。大多数天体物理激波都是无碰撞的,这意味着它们是由等离子体不稳定性形成的,等离子体不稳定性通过磁场放大、等离子体加热和粒子加速来耗散流能 6、7。因此,粒子注入与激波形成机制和激波产生的湍流磁场的性质密切相关。这些过程通常受激波马赫数(激波速度与环境阿尔文或声速之比)控制,但其控制方式尚不十分清楚。长期以来,航天器对地球弓形激波的现场测量已经形成了我们对中等阿尔文马赫数(MA ≈ 3 − 10)下无碰撞激波的理解(参考文献 8)。然而,由于这些奇异遥远激波的局部条件约束不充分,我们对超新星遗迹(SNR)激波相关的甚高马赫数范围(MA ≫ 10)的了解要有限得多,而且大部分都是通过数值模拟获得的 9 – 12。在过去十年中,人们在利用千焦耳级激光器产生超音速超阿尔文等离子体方面做出了巨大努力
主要关键词