Loading...
机构名称:
¥ 1.0

机器学习 (ML) 是常用术语,涵盖一系列计算机应用,例如基于 ML 的临床决策支持、基于深度学习 (DL) 的计算机视觉和自然语言处理 (NLP)。本质上,计算机使用人类创建的算法来分析数据中的模式,并通过从自己的错误中学习来提高其性能。(廉价) 功能强大的计算机的增加以及更大、更强大的数据的可用性推动了 ML 在医疗保健领域的使用。1 几十年来,数据驱动的算法作为有价值的诊断工具,已显示出有希望的结果,可协助许多各自专业的临床医生。早在 20 世纪 80 年代,数据驱动的临床预测工具就已出现,用于确定哪些因胸痛到急诊室 (ED) 的患者可以安全出院回家,哪些心肌梗死风险高的患者需要进入重症监护病房 (ICU) 2,3,从而克服了医生不一致且效率低下的入院策略。这极大地改善了急诊室的工作流程,减少了入院人数,同时改善了患者的治疗效果。30 年后,许多医院都以类似的临床预测工具为基础,并采用数据驱动的算法来改善工作流程,从急诊室的简单任务到 ICU 的复杂决策。4 在人工智能时代,这些数据驱动的算法通过机器学习得到增强,具有两个理论上的好处:(1) 为模型添加非线性相关性;(2) 最终实现自我学习以提高性能。然而,根据 Gartner 炒作周期,5 我们已经越过曲线的顶端,正在走下坡路,意识到 AI 并不能解决所有患者和医生的问题(图1)。尽管如此,许多成功的应用是众所周知的:计算机视觉 DL 模型每年在波士顿的麻省总医院筛查超过 50,000 张乳房 X 光检查,以检查乳腺癌。6 在骨科,我们位于麻省总医院的 SORG(骨骼肿瘤学研究组)处于

格罗宁根大学 人工智能...

格罗宁根大学 人工智能...PDF文件第1页

格罗宁根大学 人工智能...PDF文件第2页

格罗宁根大学 人工智能...PDF文件第3页

格罗宁根大学 人工智能...PDF文件第4页

格罗宁根大学 人工智能...PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0