Loading...
机构名称:
¥ 28.0

数学是现代工程的语言,线性代数是其美国方言——不雅、实用、无处不在。本书旨在帮助工程专业的学生为人工智能、数据科学、动力系统、机器学习和其他领域的数学方面做好准备,这些领域的进步主要依赖于线性代数方法。读者在读本书时至少在微积分课程中接触过矩阵和向量。这些工具虽然已经作为计算设备为人们所熟悉,但它们包含值得仔细研究的更深层次的结构。我们的任务是在此计算能力的基础上,理解使现代工程方法成为可能的抽象框架。本书在重点和节奏上与标准线性代数课程不同。抽象向量空间出现较早,但始终服务于具体应用。奇异值分解和特征理论——对现代实践至关重要——到达了中间点,允许扩展动力学和数据科学中的应用。书中贯穿着实际例子,表明理论理解和实用实施是对称的。主题顺序平衡了教学必要性和当代相关性。线性方程组提供了一个切入点,通向向量空间和线性变换。内积和正交性构建了几何直觉,线性微分方程和迭代系统为特征分解提供了动力。奇异值分解既是理论的巅峰,也是通往强大应用的桥梁,例如主成分分析、低秩近似和神经网络。本书的存在是因为工程教育必须发展。虽然线性代数的基础保持稳定,但它们的应用却急剧扩展。今天的工程学生需要掌握抽象理论和实际实施——不仅仅是应用现有的工具,还要创造新的工具。线性代数不是终点,而是迈向更深层次数学结构的第一步。我们正是通过这个视角来探讨这个问题:作为当前实践和未来进步的门户。

线性代数:本质与形式

线性代数:本质与形式PDF文件第1页

线性代数:本质与形式PDF文件第2页

线性代数:本质与形式PDF文件第3页

线性代数:本质与形式PDF文件第4页

线性代数:本质与形式PDF文件第5页