简介。动力学系统理论描述了通过系统的吸引子进行长期复发行为:动态不变的集合。说,系统空间的区域(点,曲线,光滑的歧管或分形)反复访问。这些对象由运动的基本方程及其支持的概率分布(Sinai-Bowen-Ruelle(SRB)测量)隐式确定,这被解释为热力学宏观植物的类似物[1,2]。这是经典统计力学的基础。在此基础上,以下介绍了旨在研究量子系统类似至关重要的状态空间结构的工具。这需要开发一个更基本的“量子系统状态”的概念,这实质上超越了密度矩阵的标准概念;尽管它们可以直接恢复。我们将这些对象称为系统的几何量子状态,并平行于SRB测量,它们是通过纯量子状态空间上的概率分布来指定的。量子力学是在状态| ψ⟩是复杂的希尔伯特空间h的元素。这些是系统的纯状态。为了解决更普遍的情况,人们采用密度矩阵ρ。这些是h中的运算符,它们为正半限定ρ≥0,自动偶会ρ=ρ†,并且归一化的trρ=1。合奏理论[3,4]给出了对密度矩阵为系统概率状态的解释。,因为密度矩阵总是分解为特征值λI和特征向量| λi⟩:
主要关键词