Loading...
机构名称:
¥ 1.0

使用一个充分理解的量子系统模拟另一个不太了解的量子系统的想法具有悠久的历史[1]。随着量子信息技术的最新发展,它吸引了许多研究领域。在核和粒子物理学区域,量子模拟吸引了显着但仍在增长的研究兴趣[2-42],因为它的潜力避免了符号问题,从而阻碍了传统的数值方法来计算构成标准模型基础的规范理论的实时动力学。仪表理论是相对论量子场理论在局部量规传输下不变的。局部规格不变性在近期量子计算机上有效,准确地模拟量规理论带来了许多挑战。在许多哈密顿的晶格仪理论中,例如Kogut-susskind Hamiltonian [43],量子链接模型[44,45]和循环 - 弦乐 - 哈德隆公式[46 - 48],相互作用是局部的,并非所有与物理状态相对应的局部自由度。只有满足当地仪表不变性(高斯定律)的状态是物理的。结果,量子硬件中的噪声或量子算法所构图(例如Trotterterization误差)可能会导致模拟中的非物理结果。许多通用误差缓解技术,例如零噪声CNOT外推[49 - 51]不足以完全恢复物理结果,因为算法的门忠诚度和系统误差有限[10]。有许多研究试图解决这个问题,例如整合了高斯定律(例如,参见参考文献[52,53]),添加了违反规格的惩罚项[54 - 61],使用动态驱动器和量子控制的不同规格选择(所谓的“ dy-Namical Declopling” [62]),使用对称性保护[63]和命中后[64],以及

简单的哈密顿量用于强烈的量子模拟

简单的哈密顿量用于强烈的量子模拟PDF文件第1页

简单的哈密顿量用于强烈的量子模拟PDF文件第2页

简单的哈密顿量用于强烈的量子模拟PDF文件第3页

简单的哈密顿量用于强烈的量子模拟PDF文件第4页

简单的哈密顿量用于强烈的量子模拟PDF文件第5页

相关文件推荐

2025 年
¥2.0
2020 年
¥4.0