变电站下游和少数双向电力流的集成控制。可见性和控制的提高可以改善态势感知和电网运行,从而有可能提高服务(即能源、容量、辅助)的可负担性。随着越来越多的低成本风能和太阳能加入电网,以及一些基载电厂的退役,可变发电的相对水平上升。再加上更多低成本存储的增加和能源效率进步带来的电力增长抵消,正在改变许多电网运营区域所需的能源、容量和辅助服务的平衡,从而影响能源系统未来的可负担性、可靠性和弹性。• 增加基于电力电子的管理和控制:家庭、企业和公用事业公司不断在电网上安装新设备(例如电动汽车充电器、屋顶太阳能、储能和智能家电)。随着这些新设备的数量增加到数百万,需要新的解决方案和功能来优化配电系统管理。处理与大量设备之间的通信以及由此产生的大数据的能力也成为管理电网的挑战。在最佳系统中,大容量电力和配电系统之间将有可靠的通信和可视性,以保持整体电网平衡并最大限度地提高资产利用率;因此,配电和大容量电力系统之间的无缝电力流、通信和数据管理将为运营决策创造更多实时选项,既有利于客户偏好,也有利于电网稳定。配电和大容量电力系统两侧的众多设备以及新的太阳能和风力发电厂将通过电力电子设备进行交互,这可以提高稳定性并在设备和子系统之间提供可控的接口,但通过加快或减慢同步发电设备的速度来管理电力流或抑制不稳定性是不够的;因此,需要开发用于高渗透率电力电子设备的控制和集成策略。• 能源系统混合:HES 中未知的相互依赖性(电网、电气化交通和燃料等领域交叉的系统)对电网提出了挑战。在这些系统中,技术、发电类型和控制策略的混合增加了集成的复杂性。HES 既可以作为新发电和存储的有意集成,也可以通过结合新控制架构中的单个技术(例如微电网)而存在。为了降低混合风险,我们需要研究电能到 X(其中 X = 分子、氢、热等)、可控负载(例如电动汽车、建筑物和工业负载)和多时间尺度控制策略。通过在集成和规划阶段将大规模发电、存储、高级控制和网络安全的交互纳入 HES,可以管理相互依赖的挑战。• 网络安全控制策略:随着单一大型发电机被数百万个分布式风力发电厂、光伏 (PV) 系统和存储系统所取代,并且随着家庭、商业建筑和工业设施开始通过削减、转移和调节负载来管理 DER,对脆弱的通信和控制系统的依赖正在增加。整个大型电力系统和电网边缘的分散通信和控制系统比当前的分层系统存在更多漏洞;但是,这些系统的本地传感和控制的大幅增加可以实现对网络或物理攻击的自动识别和响应
主要关键词