Loading...
机构名称:
¥ 1.0

具有可伸缩方法的聚合物中的微孔微孔度具有巨大的潜力,可以进行节能分子分离。在这里,我们报告了一种双相分子工程方法,可以通过界面聚合制备微孔聚合物纳米膜。通过整合两个微孔生成单元,例如水溶性Tröger的碱基(TBD)和一个扭曲的螺旋氟二氟烯基序(SBF)基序,最终的TBD-SBF聚酰胺显示出前所未有的高表面积。与传统化学制备的对照膜相比,具有中等分子量截止(〜640 g mol-1)的溶剂渗透率高达220倍(〜220 nm),该溶剂渗透率提高了220倍,而传统化学作品中的对照膜相比,目前均优于当前报道的聚合物膜。,我们还通过探索水相单体的同类异构体作用来操纵微孔力,突出了基于SBF的微孔聚酰胺对碳氢化合物分离的巨大潜力。

科学期刊

科学期刊PDF文件第1页

科学期刊PDF文件第2页

科学期刊PDF文件第3页

科学期刊PDF文件第4页

科学期刊PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2020 年
¥1.0
2021 年
¥1.0
2020 年
¥1.0
2021 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2021 年
¥1.0
2020 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0
2024 年
¥2.0
2021 年
¥1.0
2021 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2024 年
¥2.0
2020 年
¥1.0