在气候模型中模拟稳定水同位素体(即同位素组成不同的分子)的丰度,可以与代理数据进行比较,从而检验有关过去气候的假设并在不同的气候条件下验证气候模型。然而,许多模型在运行时并没有明确模拟水同位素体。我们研究了使用机器学习方法取代基于物理的降水中氧同位素组成的明确模拟的可能性。这些方法针对给定的表面温度和降水量场,估计每个时间步长的同位素组成。我们基于成功的 UNet 架构实现卷积神经网络 (CNN),并测试球形网络架构是否优于将地球经纬度网格视为平面图像的简单方法。我们使用 iHadCM3 气候模型对过去一千年的运行情况进行案例研究,发现同位素组成时间变异的约 40% 可以通过跨年和月度时间尺度的模拟来解释,且模拟质量在空间上存在差异。经测试的 CNN 性能显著优于简单的基线模型,例如随机森林和逐像素线性回归。针对平面图像的标准 UNet 架构的修改版本,其预测结果与球形 CNN 的预测结果相当。不同气候模型中同位素实现方式的差异,可能导致在使用与训练模型不同的气候模型获取的数据进行测试时,模拟结果出现显著下降。未来稳定水同位素模拟的研究方向可能侧重于实现稳健的气候-氧同位素关系,或探索可能的预测变量集。
主要关键词