这项研究通过调查智能工具通过创造,分散和记者消费所带来的极端主义过渡来分析AI对传统新闻业务模型的影响。该研究重点是智能自动化如何适应传统媒体的布置,该媒体对线性和层次模型具有时间信任,对更加分散和协同的标准结构进行了信任。研究首先要指定智能自动化及其在过去十年中的进步,从机器学习和深度学习到最先进的生成模型的状态。然后,它按系统的顺序分析了与新闻学的数字适应性有关的理论,例如数字决定论和广播的政治经济学,以分析AI对常规新闻机构的系统影响。此外,该研究还考虑了新闻行业智能自动化的可行目标,包括通过新闻实践自动化满意度的自动化,检查重要信息以进行满足的个性化以及受众的消费流程。它还调查了与这种过渡相关的学术和光荣的挑战,例如失去创新的个性,假新闻的扩散以及系统的歧视,这些歧视会重组论坛的互动形式。因此,研究得出的结论是,在MLP的产生中引入广播强调了进行监督程序的必要性,以保持愉快的自主权并提高智能结构的透明度,以确保数字突破和良性广播程序之间的一致性。
主要关键词