在这项研究中,作者提出了一种对黑色素瘤皮肤癌(MSC)进行分类的深度学习方法。他们引入了一个由27层组成的卷积神经网络(CNN)模型,该模型经过精心设计,旨在从皮肤病变图像中提取特征并将其分类为黑色素瘤和非黑色素瘤类别。提出的CNN模型包括多个卷积层,这些卷积层将过滤器应用于输入图像以提取诸如边缘,形状和图案之类的特征。批发层将卷积层的输出归一化以加速学习过程并防止过度拟合遵循这些卷积层。在皮肤病变图像的公开数据集上评估了所提出的CNN模型的性能,并且发现表明,它的表现优于黑色素瘤分类的几种最新方法。作者还进行了消融研究,以分析每层对模型整体性能的贡献。所提出的DL方法有可能协助皮肤科医生早期检测MSC,这可能导致更有效的治疗并改善患者的预后。它还证明了DL技术在医学图像分析中的有效性,并突出了仔细设计和优化CNN模型以进行高性能的重要性。提议的系统的准确性为99.99%。
主要关键词