最近,在发现高温超导体后,人们对建模超导体的性质引起了极大的兴趣。在理论上是由微观BCS理论的平均[2]从理论上推导的一种流行的宏观模型[1],Ginzburg和Landau [3]在其现象学方法中首先引入了接近过渡温度的现象学方法。与时间相关的Ginzburg – Landau(TDGL)模型是由Gor'kov和Eliashberg [4]推导出的,从微观BCS理论中,后来由许多作者研究了该模型。有关超导性的显微镜和宏观理论的更多物理背景,我们指的是最近的调查文章[5,6]及其参考文献。超导层分层化合物是材料,其中过渡金属二核苷的金属单层固有地堆叠(固有层化合物),或者在上述金属层之间将有机分子插入(相互量化的层化合物)。此类金属层的一些示例是TAS#,Tase#,NBS#,NBSE#等等。在本文中,我们将考虑劳伦斯– donioch(LD)模型[7],其中约瑟夫森隧道与相邻层中的金兹堡 - 陆订单参数相结合。有关LD模型的更多信息,我们还参考了参考文献[8-10]及其中的参考。在本文中,我们首先描述了§2中的固定LD模型,并证明了存在结果。然后,在第3节中,我们介绍了时间依赖的劳伦斯– Donioch(TDLD)模型,并显示了TDLD模型强解决方案的存在和独特性。在§4中,我们显示了本文的主要结果,即TDGL模型是TDLD模型的极限
主要关键词