Loading...
机构名称:
¥ 1.0

响应标准主题2基因表达调节和核中的干扰RNA应用,主要基因表达控制机制是转录本,主要基于正和阴性调节。最讨论的例子来自乳糖操纵子,其中,根据诱导剂的存在和不存在(乳糖和葡萄糖),基因表达可以被激活或灭活。其他级别的基因表达控制也可以作为转录后,其中考虑了RNA的寿命。翻译,其中考虑了重要区域的可用性,例如SD的可用性;并考虑蛋白质在细胞质(降解)和位置的蛋白质后。在真核生物中,基因表达调节的复杂性主要是由于细胞分区化和基因组组织的复杂性而增加。在这种情况下,核中基因组的三维结构及其压实将是转录本调制的第一步。表观遗传调节也是控制基因表达的重要因素,这是由于组蛋白蛋白的修饰,与DNA分子压实和DNA分子本身的甲基化变化有关。此外,有必要考虑存在染色质改造并标记,无声和绝缘剂。翻译和翻译后控制又与蛋白质的生产有关,其修饰和细胞位置。转录后控制涉及将核心转运到细胞质,合成的RNA分子的正确加工和寿命,即这些分子在细胞质室中的降解以及它们在这种环境中的位置。为例,研究报告了对蛋白质合成开始的重要序列和区域的调节,以及蛋白质降解,细胞位置体征和成分插入,例如蛋白质糖化。RNA干扰(RNAi)是一种双链诱导的基因机制(DSRNA),是一个特定的序列,涉及dsRNA和简单链RNA分子,通常是在dsRNA之后同源的。RNAi沉默分为两个步骤。第一个涉及小siRNA中dsRNA的降解。在第二阶段,siRNA被RNA诱导的沉默复合物(RISC)的蛋白质认识。RISC复合物然后将siRNA的两个链分开,并寻求互补的RNA序列。RISC复合物的核酸酶降低了互补的RNA。参与此过程RNA Dewective聚合酶,Hetecase,netonenocleases和Nuclease dicer。RNAi被发现是植物物种中的自然防御系统。在植物中,RNAi机械的主要靶标是带有RNA基因组的病毒,在繁殖过程中产生DSRNA中间体。RNAi用于基因功能的研究,而无需基因组修饰。RNAi用于基因功能的研究,而无需基因组修饰。目前,已将其应用作为控制病原体和病毒载体的治疗策略。为此,可以产生构成分子(dsRNA)的转基因植物可以触发沉默机制中的第一步。但是,该策略具有其主要缺点,需要DSRNA的本构表达,而在植物物种中,RNAi产生的沉默抑制因子。另一个缺点是,这种控制主要针对具有RNA基因组的病毒,因此可能会受到高突变率的影响。因此,如果将RNAi定向到正在改变的序列,则这种治疗策略不再有用。最后,有必要考虑产生转基因耕地的成本以及在植物物种中获得转基因植物的效率。为了绕过上述瓶颈,研究表明,dsRNA的直接叶片应用,因为这些分子可以通过浮肿和细胞之间系统地传播。随着DSRNA生产成本的降低,这可能是一种更可行的治疗方法。但是,在所有情况下,有必要考虑由于RNA污染环境污染而导致的RNA分子的降解率很高。在动物中,可以使用RNAi阻止外源性或内源基因的表达,例如,用于生产病毒抗性动物,或使用RNAi来增加动物的生长。通过RNAi的遗传修饰通过避免在不必要的地方插入基因插入来比以前的遗传工程方法更安全。

助理研究员专业:分子生物学

助理研究员专业:分子生物学PDF文件第1页

助理研究员专业:分子生物学PDF文件第2页