摘要 - 电流的近期量子设备在过去几年中显示出巨大的进步,最近以量子至上的演示来达到顶峰。在中期,量子机将需要通过误差校正过渡到更大的可靠性,这可能是通过有希望的技术(例如表面代码),非常适合具有有限的量牌连接性的近期设备。我们发现了量子内存,尤其是在2.5D体系结构中排列的带有transmon Qubits的谐振腔,可以充分地实现具有大量硬件节省和性能/效果增益的表面代码。特别是,我们通过将它们存储在连接到每个Transmon的量子记忆中来虚拟化逻辑量子。令人惊讶的是,在许多记忆中分配每个逻辑量子空心,对容错的影响最小,并导致更有效的操作。我们的设计允许在共享相同物理地址(相同的腔体)之间快速横向应用CNOT操作,该逻辑量子量比标准晶格手术CNOT快6倍。我们开发了一种新颖的嵌入,该嵌入可节省大约10倍的传输中,并从额外的优化紧凑度中节省另外2倍的嵌入。尽管Qubit虚拟化在序列化方面支付了10倍的惩罚,但横向CNOT和区域效率的优势会导致故障耐受性和性能可与便利性2D Transmon-fransmon-fly-lyly架构相当。我们的模拟显示我们的系统可以实现与常规二维网格相当的容错性,同时节省大量硬件。fur-hoverore,我们的体系结构可以以1.22倍的基线速率产生魔术状态,而基线速率给定数量的Transmon Qubt。这是对未来容忍量子计算机的关键基准,因为魔术状态是必不可少的,机器将不断地将它们的大部分资源用于生产它们。该体系结构大大降低了容忍故障量子计算的硬件要求,并将概念验证实验证明的证明证明约为10个逻辑量子,总共只需要11个Transmons和9个附件。索引项 - 量词计算,量子误差校正,量子存储器
主要关键词