Loading...
机构名称:
¥ 1.0

人类语言学习在此过程中在个人之间有显着差异和最终成就。尽管数十年的研究探索语言学习的神经底物已经确定了独特而重叠的神经网络,这些神经网络依靠不同组成部分的学习,但驱动较大个体间差异的神经机制仍然远非被理解。在这里,我们研究了培训会议中男女多种大脑网络的神经动力学在多大程度上有助于解释在7 d培训和成像与功能MRI的7 d训练和成像中,在学习多种语言组成部分(即词汇,形态和短语和句子结构)的多种程度差异。通过机器学习和预性建模,跨培训课程的神经激活模式高度预测了从四个组成部分得出的个体学习成功曲线。我们确定了四个神经学习网络(即Perisylvian,Frontoparietal,显着性和默认模式网络),并检查了他们对学习成功预测的动态贡献。此外,根据特定的训练阶段和学习组件,跨网络的预测性鲁棒性会系统地改变。我们进一步揭示了下部额叶,孤立和额叶区域中网络节点的子集越来越代表新获得的语言知识,而在学习过程中,这些表示区域之间的多元连通性在学习过程中增强了更多成功的学习者。这些发现使我们能够理解为什么学习者有所不同,并且第一个不仅可以归因于跨组件的成功程度,而且归因于语言学习的模式,也可以归因于从多个神经网络动力学中总结的神经指纹。

个体语言学习概况的神经指纹

个体语言学习概况的神经指纹PDF文件第1页

个体语言学习概况的神经指纹PDF文件第2页

个体语言学习概况的神经指纹PDF文件第3页

个体语言学习概况的神经指纹PDF文件第4页

个体语言学习概况的神经指纹PDF文件第5页

相关文件推荐