Precision 3D打印技术和材料的进步具有戏剧性的改进的原型制作技术,从而使生物医学平台的世界广泛更快,更有效。[1]微分辨率3D打印机可以通过使用微铣削技术来制造高度复杂的质量可实现部分,而功能不可能提高。[2]因此,微尺度3D打印技术在生物医学领域中用于开发简单有效的透射药物输送平台(包括微针(MNS)),最近由于克服了克服传统MN的几何局限而引起了人们的注意。[3]由微米尺度聚合物针制成的可溶解的MN斑块是一种患者友好型的透皮药物输送系统,能够以最小的侵入性将活性化合物延伸到皮肤中。[4]然而,由于其锥形几何形状,常规MN并不能完全穿透皮肤,从而导致负载货物的递送精度较低,[5]对它们在药物领域中的临床应用和商业化产生了负面影响。[6]因此,已经开发出各种MN施加器,箭头微结构,微柱基和多步制造方法,以克服有限的Contectional MN的交付精度。[7]但是,这些方法的制造复杂性限制了它们在制药行业的批量生产和应用。因此,迫切需要开发一个简单且可实现的MN平台,能够准确交付负载的货物。在此,使用数字灯处理(DLP)基于芯片的图3D打印机用于制造一种可在皮肤组织中完全插入和锁定的新型自锁的MN,从而显着提高了Microuse递送精度,从而克服了传统MN的限制。制造简单性和质量增强性主要是在自我锁定的MN发展过程中主要集中在一个高度精确的透皮药物输送平台上。简而
主要关键词