互联网和微电子的持续进度,尤其是智能手机,平板电脑和智能手表等便携式设备,导致了紧凑,集成和微型化工具,消耗了高功率。第11代和第12代CPU是过去2年中笔记本电脑中使用的主要CPU。运营功耗已达到180 W,大小为50×25毫米。表面热孔最多可高达14.4 w/cm 2(Liu等,2013)。电子设备的微型化已大大降低了散热的有效区域。随着电子设备的功耗的连续升级,表面热量不可避免地会迅速增加,从而面临着由于有限的空间而带来的便携式电子设备的安全冷却限制(Micheli等,2013; Tang等,2018)。电子设备的可靠性显然对应保留在安全操作限制内的温度敏感。因此,需要不断开发高级散热技术,以避免由于过热而导致电子设备的损坏和故障。作为一种被动冷却技术,加热管已成为电子冷却的有效方法,考虑到高导热率,简单结构,没有外部驱动力(Su等,2018)。然而,传统的热管(例如环热,脉动热量和振荡热管)无法在有限的便携式电子设备的有限空间中满足高热量散热,这些设备较轻,更薄(Dai等,2020)。因此,由于其紧凑的尺寸,高稳定性和有效的温度均匀性,已广泛研究并在高热量便携式电子冷却中广泛研究并用于高热量便携式电子冷却。这项研究总结了UTHP技术和Wick结构的最新发展,并分析了挑战和未来的前景(Zhong等,2020)。
主要关键词