●什么是genai:AIGC是通过获取人类的指示,从中获得含义以及使用该目标信息来创建内容根据其知识和理解来创建的。大规模模型近年来在AIGC中具有重要意义,因为它们可以提取出色的意图,从而可以提取更好的生成结果。随着数据和模型大小的增加,模型可以学习的分布变得更加广泛,对现实变得更加真实,从而创建了更高质量和更现实的内容。本调查对随着时间的推移的生成模型的发展进行了详尽的分析,并概述了它们从单峰到多模式相互作用的AIGC中的基本元素和当前的发展。我们从非模式的角度提供了生成任务以及相关的文本和图像模型。II。 AI和生成的历史:生成AI,也称为生成建模,是人工智能(AI)的一个分支,致力于创建能够生成类似于给定数据集的新数据的模型。 该领域的历史悠久数十年,由于深度学习和神经网络的发展,近年来取得了重大进步。 以下是生成AI的历史的详细概述:2010年代见证了生成AI的重大突破,这在很大程度上是由深度学习进步所驱动的。 AutoCododers(VAE)由Kingma和Welling在2013年推出,为学习潜在数据表示提供了一个概率框架。 生成对抗网络(GAN),由Ian Goodfellow等人提出。II。AI和生成的历史:生成AI,也称为生成建模,是人工智能(AI)的一个分支,致力于创建能够生成类似于给定数据集的新数据的模型。该领域的历史悠久数十年,由于深度学习和神经网络的发展,近年来取得了重大进步。以下是生成AI的历史的详细概述:2010年代见证了生成AI的重大突破,这在很大程度上是由深度学习进步所驱动的。AutoCododers(VAE)由Kingma和Welling在2013年推出,为学习潜在数据表示提供了一个概率框架。生成对抗网络(GAN),由Ian Goodfellow等人提出。在2014年,基于对抗性训练引入了一种新颖的生成建模方法。gan由两个神经网络组成,一个发电机和一个歧视器,在最小值游戏框架中同时训练有素,在该框架中,生成器学会了生成逼真的数据,而歧视器则学会区分真实数据和生成数据。gan在生成高质量的图像,音频,文本和其他类型的数据方面取得了显着成功,从而导致艺术生成,图像合成和数据增强的广泛应用
主要关键词