Loading...
机构名称:
¥ 2.0

物理和机械方法,例如电孔,22个超声,23磁化,24磁化,25个基因枪,26和微分注射,27将裸露的NAS驱动到细胞质或细胞核中,以实现成功的基因转移。尽管他们的潜力和科学家的注意力引起了人们的注意,但这些技术的局限性使它们在转移目的中的吸引力不如其他技术吸引力。的确,在体内使用时,它们通常会引起毒性,并且不是很有效。将NAS输送到细胞中的一种直截了当的方法依赖于使用基因输送载体(载体),该方法被归类为病毒和非病毒。工程的病毒载体,其中所述的治疗基因盒代替了部分病毒基因组的一部分,目前是基因治疗中最广泛使用的载体,由于它们的天然能力进入宿主细胞以产生高传递性效率。18,28,29虽然显着推进了基因治疗领域,但病毒载体也带有几种缺点,包括致癌,免疫原性,广泛的托波主义,有限的DNA包装能力以及矢量产生的挑战。30 - 33个非病毒基因递送(即,一个称为转染的过程)有望解决许多这些限制,尤其是在安全方面。例如,与病毒载体相比,合成的车辆通常具有较低的免疫原性,并且患者缺乏预先存在的免疫力,就像某些病毒系统一样。非病毒载体也这会导致人体更安全,更耐受性的非病毒载体,从而在需要长期治疗的情况下(例如慢性结合)的患者重复给药,而不会引起免疫学反应或毒性积累。

聚合物化学-RSC出版

聚合物化学-RSC出版PDF文件第1页

聚合物化学-RSC出版PDF文件第2页

聚合物化学-RSC出版PDF文件第3页

聚合物化学-RSC出版PDF文件第4页

聚合物化学-RSC出版PDF文件第5页