异常的 tau 内含物是阿尔茨海默病的标志,也是临床衰退的预测指标。有几种 tau PET 示踪剂可用于神经退行性疾病研究,为体内分子诊断开辟了途径。然而,很少有人获准用于临床。了解 PET 信号验证的神经生物学基础仍然存在问题,因为它需要 PET 和(免疫)组织学信号之间大规模的体素到体素相关性。整个人脑的维度很大,组织变形会影响配准,而处理 TB 级信息的计算要求阻碍了正确的验证。我们开发了一个计算管道,用于识别和分割十亿像素数字病理图像中的感兴趣粒子,以生成定量的 3D 密度图。针对免疫组织化学样本的拟议卷积神经网络 IHCNet 是该管道的核心。我们已成功使用三种磷酸化 tau 抗体(AT100、AT8 和 MC1)处理并免疫染色了来自两个完整人脑的 500 多张载玻片,这些载玻片包含数 TB 的图像。我们的人工神经网络从大脑图像中估计了 tau 的包含情况,其对 AT100、AT8 和 MC1 的 ROC AUC 分别为 0.87、0.85 和 0.91。自省研究进一步评估了我们训练的模型学习 tau 相关特征的能力。我们提出了一种端到端流程来创建 TB 级的 3D tau 包含密度图,并将其与 MRI 联合配准,以方便验证 PET 示踪剂。
主要关键词