全球民用航空系统是有史以来最复杂的动态系统之一。大多数现代商用飞机都配备了机载飞行数据记录器 (FDR),可在整个飞行过程中以大约 1 Hz 的频率记录数百个离散和连续参数。这些数据包含有关飞行控制系统、执行器、发动机、起落架、航空电子设备和飞行员命令的信息。在本文中,我们讨论了开发一种新颖的知识发现过程的最新进展,该过程由一套用于识别航空安全事故前兆的数据挖掘技术组成。数据挖掘技术包括可扩展的多核学习,用于大规模分布式异常检测。一种新颖的多元时间序列搜索算法用于在海量数据集上搜索已发现异常的特征。该过程可以识别高维飞行运营质量保证 (FOQA) 数据中由于环境、机械和人为因素问题而导致的对运营有重大影响的事件。所有发现的异常都由一组独立的领域专家进行验证。这种新颖的自动化知识发现过程旨在补充最先进的基于人为超标的分析,这种分析无法发现以前未知的航空安全事件。在本文中,我们讨论了发现流程、使用的方法以及在现实世界的商业航空数据中检测到的一些重大异常。
主要关键词