压缩态和纠缠态已被证明是光量子传感和提高测量灵敏度的宝贵资源。然而,它们的潜力尚未得到充分挖掘。在我的论文的第一部分,我展示了压缩光操作的马赫曾德干涉仪的实验量子增强。我测量了超过十倍的非经典灵敏度改进,相当于 (10.5 ± 0.1) dB,这相当于相干光功率增加了 11.2 倍。此外,我的论文提出了一个关于马赫曾德拓扑内直接吸收(损耗)测量的新概念。该技术使用量子相关的二分压缩光束来测量放置在马赫曾德干涉仪一个臂中的样品的透射率。我的原理验证实验表明,损耗与所用光电二极管的量子效率无关。除此之外,该概念可能成为集成量子光子器件生物传感光学测量的有力工具。感光样品在强光照射下特别容易受到高功率的影响,而这种测量将受益于压缩光的极低强度。在我的论文的第二部分,我展示了如何克服传感动态系统中的量子不确定性。首次实现了相对于纠缠量子参考具有亚海森堡不确定性的相空间轨迹。时间演化得到无条件监测,其精度比任何没有关联的量子力学系统高十倍。我同时测量了相位和振幅正交,剩余不确定性为 ∆ X ( t ) ∆ Y ( t ) ≈ 0.1 Å h / 2 。结果支持纠缠增强传感器的量子技术,并证实了量子不确定性关系的增强物理描述。从这个角度来看,我重新审视了海森堡的不确定性关系,并得出结论,它为两个共轭可观测量相对于已耦合到环境的参考系统的不确定性设置了下限。
主要关键词