航空航天 [ 1 ]、汽车 [ 2 ]、电子 [ 3 ]、医药 [ 4 ]、建筑 [ 5 ] 和医疗保健监测 [ 6 ]。根据美国材料试验协会 (ASTM) 的定义,AM 分为七种工艺:粘合剂喷射、板材层压、直接能量沉积、材料挤出、粉末床熔合、材料喷射和大桶光聚合[ 7 ]。基于 AM 的应用,该领域已对不同工程方面进行了研究。例如,最近的研究工作研究了可持续性 [ 8 ]、机械强度 [ 9 ]、环境影响 [ 10 ] 和不同的焊接应用 [ 11 ]。由于 AM 加工参数(例如粉末大小、打印速度、层厚度、激光功率和光栅方向)对 3D 打印部件的结构完整性和机械性能具有至关重要的影响,因此已经使用不同的方法来优化这些参数并预测打印部件的机械行为 [12 e 17]。例如,最近在 [16] 中,基于一系列拉伸试验确定了 3D 打印聚合物复合材料的强度和刚度。此外,还记录了纤维取向对所检查部件机械性能的影响。在 [17] 中,从微观和宏观层面研究了工艺条件对 3D 打印复合材料制造的影响。在此背景下,基于材料挤出技术打印了短碳纤维增强聚合物复合材料。基于图像的统计分析用于微观结构表征(例如纤维体积分数)。此外,还使用蒙特卡洛采样方法来丰富数据集。结果表明,工艺参数对孔隙产生和孔隙体积分数分布起着至关重要的作用。文献调查显示,与实验实践并行,数值模型和不同的人工智能 (AI) 方法也已用于研究 3D 打印部件的性能特征 [18 e 21]。例如,在 [22] 中,采用 3D 有限元模型来确定工艺参数对陶瓷材料 3D 打印中熔池轮廓和焊珠形状的影响。同时,提出了一种基于物理的分析模型来评估增材制造金属零件中的残余应力 [23]。为此,使用温度分布预测来评估该过程的热特征。据报道,热应力用作计算残余应力的输入。这些先前的研究表明,进行的模拟仅集中在 AM 过程的一个或两个方面。由于快速准确地预测所有机械性能和某些制造方法的整个过程是不切实际的,因此人们使用了数据驱动模型,其统一称为机器学习 (ML) [ 24 和 28 ]。机器学习是一门跨学科的学科,是人工智能的一个分支,它通过算法学习促进了低成本计算[29]。在机器学习方法中,不需要一长串基于物理的方程,而是使用以前的数据。基于机器学习方法的优势,它们已在增材制造领域用于不同目的[30e39]。例如,在[30]中,提出了一种混合机器学习算法来推荐3D打印部件的设计特征。通过3D打印汽车部件的设计检验了所提出的方法。经验不足的设计师可以在设计阶段使用所述方法。基于建议的增材制造设计特征,机器学习算法的功能
主要关键词