Loading...
机构名称:
¥ 1.0

跨电磁频谱上的快速响应光传感是量子系统,3D机器视觉和增强现实的推动力,但是现有技术尚未针对红外传感进行优化。诸如速度,效率,噪声,光谱检测范围和成本等特征之间的权衡激励研究界开发纳米结构的感应材料,这些传感材料可提供从可见的到无缝集成的红外波长。努力促进设备的组合增益和带宽,因此对电荷载体动力学基础的物理机制有了清晰的理解,并特别关注速度限制过程,这是很高的优先级。在这篇综述中,我们提供了活性材料的光物理属性及其对光学传感器性能的影响,重点是时间和峰值响应之间的相互作用,以抗不同持续时间的脉冲光。我们确定了限制性能的过程和方向,以实现高速光检测的开发材料和设备体系结构的未来进展。

高速光探的材料的光物理特性

高速光探的材料的光物理特性PDF文件第1页

高速光探的材料的光物理特性PDF文件第2页

高速光探的材料的光物理特性PDF文件第3页

高速光探的材料的光物理特性PDF文件第4页

高速光探的材料的光物理特性PDF文件第5页

相关文件推荐

2025 年
¥1.0
2024 年
¥2.0
2023 年
¥1.0
1900 年
¥1.0
2021 年
¥1.0
2021 年
¥3.0
2023 年
¥1.0
2022 年
¥1.0
2020 年
¥1.0
2021 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2022 年
¥1.0
2019 年
¥2.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥6.0